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 Energy comes in many forms.  We first encounter kinetic energy 𝑇 = 1
2
𝑚𝑣2.  The kinetic 

energy of a single particle can change when it is acted upon by a force that has a component 
along the direction of displacement of the particle: 𝑑𝑇 = 𝐹⃗ ∙ 𝑑𝑟.  .  This leads to the Work-

Kinetic energy theorem: 𝑇2 − 𝑇1 = ∫ 𝐹⃗(𝑟′) ∙ 𝑑𝑟′𝑟2
𝑟1

, where the value of the line integral (known as 

‘work’) will in general depend on the path taken between the points 𝑟1 and 𝑟2. 

 There are two types of forces – conservative and non-conservative.  Conservative forces 
have potential energy functions associated with them.  To be conservative, a force must satisfy 
two requirements: 

1) The force depends only on the particle coordinates, and not the velocity, momentum, 
time, etc. 

2) The work done by the force between any two points must be independent of path. 

Examples of conservative forces include gravity and the electrostatic force.  Non-conservative 
forces include friction and the drag forces that we considered earlier. 

 The potential energy is defined as follows.  Choose an arbitrary position 𝑟0 where the 
potential energy will be assigned a value of 0.  The potential energy is defined in terms of the 

work done on the particle to take it from 𝑟0 to any point 𝑟: 𝑈(𝑟) ≡ −𝑊(𝑟0 → 𝑟) = −∫ 𝐹⃗(𝑟′) ∙𝑟
𝑟0

𝑑𝑟′ , where there is no need to specify the contour for the line integral.  Note the minus sign.  
With this definition, one can show that if only conservative forces act, the total mechanical 
energy 𝐸 = 𝑇 + 𝑈 of the system is conserved, i.e. ∆𝐸 = 0.  This conservation law is very useful 
for solving problems.  If non-conservative forces do act, along with conservative forces, then the 
mechanical energy of the system changes by an amount equal to the work done by the non-
conservative forces: ∆𝐸 = 𝑊𝑛𝑐.  𝑊𝑛𝑐 is typically negative because non-conservative forces 
usually ‘steal’ mechanical energy. 

 We considered the process of deducing a vector force from a given scalar potential-
energy function.  This is done through the gradient differential operator 𝐹⃗ = −∇��⃗ 𝑈.  Note that this 
is actually three equations in one.  We did the example of the electrostatic potential 𝑈 =
𝑘𝑞1𝑞2/𝑟, and showed that the associated force is the Coulomb electrostatic force 𝐹⃗ =
𝑘𝑞1𝑞1𝑟̂/𝑟2.  Since conservative forces are derived from a potential energy function, we can find 
a simple necessary (but not sufficient) test to see if the force really is conservative.  Taking the 
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curl of a conservative force yields ∇��⃗ × 𝐹⃗ = −∇��⃗ × ∇��⃗ 𝑈 = 0, where the last term is a vector identity 
good for all scalar functions 𝑈(𝑟).  Hence all conservative forces must be curl-free vector fields.  
An additional requirement is that the force depends only on the particle coordinates. 

 

 


